TRAL

875

SimpleX Chat Desigh Review

Cryptographic Design Review (Summary Report)

August 12, 2024

Prepared for:
Evgeny Poberezkin
SimpleX Chat

Prepared by: Filipe Casal, Markus Schiffermuller, and Joe Doyle

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’'s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we've helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O'Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.

497 Carroll St., Space 71, Seventh Floor
Brooklyn, NY 11215
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 SimpleX Chat Design Review
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2024 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to SimpleX
Chat under the terms of the project statement of work and has been made public at
SimpleX Chat's request. Material within this report may not be reproduced or distributed in
part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer

All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 SimpleX Chat Design Review
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits
Notices and Remarks
Table of Contents
Project Summary
Project Targets
Executive Summary
Summary of Findings

O 00 00 L1 A W N =

Detailed Findings

Xe]

1. Protocols are informally described

—_—
—_—

2. User-correlating side channel via GET command
3. A compromised transport protocol allows more efficient correlation attacks 12

4. SHA256 is used as a KDF in XRCP 13
5. The XRCP protocol does not have perfect-forward secrecy or break-in recovery
within sessions 15
6. Device compromise can be hidden in some scenarios 16
7. User-correlating attack with introduced latency 18
A. Vulnerability Categories 19
Trail of Bits 3 SimpleX Chat Design Review

PUBLIC

Project Summary

Contact Information

The following project manager was associated with this project:

Anne Marie Barry, Project Manager
annemarie.barry@trailofbits.com

The following engineering director was associated with this project:

Jim Miller, Engineering Director, Cryptography
james.miller@trailofbits.com

The following consultants were associated with this project:

Filipe Casal, Consultant Markus Schiffermuller, Consultant
filipe.casal@trailofbits.com markus.schiffermuller@trailofbits.com

Joe Doyle, Consultant
filipe.casal@trailofbits.com

Project Timeline

The significant events and milestones of the project are listed below.

Date

June 21, 2024
June 28, 2024
June 28, 2024

August 12, 2024

Trail of Bits
PUBLIC

Event

Pre-project kickoff call
Delivery of report draft
Report readout meeting

Delivery of summary report

4 SimpleX Chat Design Review

Project Targets

The engagement involved a review and testing of the targets listed below.

simplex-chat/SimpleXMQ

Repository https://github.com/simplex-chat/simplexmq/protocol
Version d47c099ac94edal3342d02da2da76ef5cab5793ac
Type Design documents

simplex-chat/simplex-chat

Repository https://github.com/simplex-chat/simplex-chat/
Version fbab478e509cf56851cef44dcB543a0531bec32b
Type Design document
Trail of Bits 5 SimpleX Chat Design Review

PUBLIC

https://github.com/simplex-chat/simplex-chat/blob/fba0478e509cf56851cef44dc0543a0531bec32b/docs/protocol/simplex-chat.md

Executive Summary

Engagement Overview

SimpleX Chat engaged Trail of Bits to review the design of several protocols, the adequacy
of the threat models considered, and whether the protocol design and cryptographic
primitives used are secure with respect to the threat model considered. The protocols
under review are the SimpleX Messaging Protocol (SMP), the SMP agent protocol, the push
notification system, the file transfer protocol, the remote control protocol, and the chat
protocol, along with some variants for each protocol.

A team of three consultants conducted the review from June 24 to June 28, 2024, for a total
of one engineer-week of effort. With full access to the protocol documentation, we
manually reviewed the documentation and performed formal verification on a simplified
version of the SimpleX Messaging Protocol queue agreement.

Observations and Impact

We manually reviewed the in-scope protocols to determine whether they agree with the
threat model, and whether all relevant scenarios are described in the threat model. We
focused on identifying flaws in the end-to-end encryption guarantees that the protocols
propose, and on determining whether there are flaws in session agreement.

Although we covered all in-scope protocols, we dedicated less time to the analysis of the
agent-to-agent messaging protocol, the push notification system, and the group chat
protocol.

We found that protocol specifications were often described verbosely instead of using
precise and clear algebraic notation (TOB-SIMPLX-1). We recommend using a clear
algebraic notation to specify each protocol, which will help developers quickly determine
which keys are used, which messages are encrypted, under which keys messages are
signed, and the intended sequence of steps each user takes (e.g., when the user generates
new keys).

We also identified relevant threat scenarios missing from the threat model (TOB-SIMPLX-7
and TOB-SIMPLX-8), and found that attackers could perform actions that the
documentation deems impossible (TOB-SIMPLX-3).

Finally, we identified a protocol-level side channel on the number of exchanged messages
that could allow an attacker to correlate two users (TOB-SIMPLX-2), and that the SimpleX
Remote Control Protocol (XRCP) protocol lacks forward secrecy and break-in recovery
within a session (TOB-SIMPLX-5).

Trail of Bits 6 SimpleX Chat Design Review
PUBLIC

Recommendations

We recommend writing precise specifications for each protocol, with diagrams containing
each exchanged message, and what keys were used to encrypt or sign them. A clear
specification enables easier and faster understanding of the underlying protocols.

When considering each protocol, assume that some key used therein has been leaked and
determine if the resulting consequences should be fixed or documented.

Trail of Bits 7 SimpleX Chat Design Review
PUBLIC

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Protocols are informally described Cryptography Informational
2 User-correlating side channel via GET command Data Exposure Low

3 A compromised transport protocol allows more Data Exposure Medium

efficient correlation attacks

4 SHA256 is used as a KDF in XRCP Cryptography Informational

5 The XRCP protocol does not have perfect-forward Cryptography Informational
secrecy or break-in recovery within sessions

6 Device compromise can be hidden in some Cryptography Medium
scenarios
7 User-correlating attack with introduced latency Data Exposure Medium
Trail of Bits 8 SimpleX Chat Design Review

PUBLIC

Detailed Findings

1. Protocols are informally described
Severity: Informational Difficulty: N/A
Type: Cryptography Finding ID: TOB-SIMPLX-1

Target: protocol/xrcp.md

Description

The documentation describes protocols and message exchanges textually and with less
precision than desired. It is often hard to understand which keys are used to encrypt
messages or which parts of each message are signed.

As an example, figure 1.1 describes the keys used and what the host HELLO message for
the XRCP protocol contains.

Key agreement for announcement packet and for session

Initial announcement is shared out-of-band (URI with xrcp scheme), and it is not
encrypted.

This announcement contains only DH keys, as KEM key is too large to include in QR
code, which are used to agree encryption key for host HELLO block. The host HELLO
block will contain DH key in plaintext part and KEM encapsulation (public) key in
encrypted part, that will be used to determine the shared secret (using SHA256 over
concatenated DH shared secret and KEM encapsulated secret) both for controller HELLO
response (that contains KEM ciphertext in plaintext part) and subsequent session
commands and responses.

Figure 1.1: protocol/xrcp.md#L238-1242

Instead, keys should be given names, and notation should be more algebraic to enhance
readability and precision.

Trail of Bits 9 SimpleX Chat Design Review
PUBLIC

https://github.com/simplex-chat/simplexmq/blob/d47c099ac94eda3342d02da2da76ef5cab5793ac/protocol/xrcp.md#L238-L242

Controller

b= DHgm()

k = KDF(DH(b, g%))

kem,,, kem,,, = KEM()

g% enc,(kem.,,, info)

Controller

Figure 1.2: Host HELLO message specified in a diagram with algebraic notation

We also identified some protocol descriptions with inconsistencies.

Currently members can have one of three roles - “owner”, “admin’, “member” and
‘observer®. The user that created the group is self-assigned owner role, the new
members are assigned role by the member who adds them - only ‘owner® and “admin’
members can add new members; only ‘owner members can add members with “owner® role.
"Observer’ members only receive messages and aren't allowed to send messages.

Figure 1.3: simplex-chat/docs/protocol/simplex-chat.md#229

Figure 1.4 states that the XRCP announcement includes the KEM key, but this is false; the
KEM key is first sent only in the host HELLO message:

- Session X25519 DH key and SNTRUP761 KEM encapsulation key to agree session
encryption (both for multicast announcement and for commands and responses in TLS),
as described in https://datatracker.ietf.org/doc/draft-josefsson-ntruprime-hybrid/.
The new keys are used for each session, and if client key is already available (from
the previous session), the computed shared secret will be used to encrypt the
announcement multicast packet. The out-of-band invitation is unencrypted. DH public
key and KEM encapsulation key are sent unencrypted. NaCL crypto_box is used for
encryption.

Figure 1.4: protocol/xrcp.md#70

Recommendations
Short term, use algebraic notation for the sequence diagrams; assign names to keys and

describe messages referencing those names.

Trail of Bits 10 SimpleX Chat Design Review
PUBLIC

https://github.com/simplex-chat/simplexmq/blob/d47c099ac94eda3342d02da2da76ef5cab5793ac/simplex-chat/docs/protocol/simplex-chat.md#L229-L229
https://github.com/simplex-chat/simplexmq/blob/d47c099ac94eda3342d02da2da76ef5cab5793ac/protocol/xrcp.md#L70-L70

2. User-correlating side channel via GET command
Severity: Low Difficulty: High
Type: Data Exposure Finding ID: TOB-SIMPLX-2

Target: protocol/simplex-messaging.md

Description
A side channel in the SimpleX Messaging Protocol (SMP) allows an attacker to determine if a
user with push notifications enabled has a message in the server to be received.

When the message receiver calls the GET command, one of the following scenarios occurs:

e There is one message in the server (so the exchange has a total of four messages):
o The server sends the message to the client,
o the client ACKs that it received the message, and
o the server returns OK; or,

e If there is no message in the server, the exchange has only two messages:
o The server simply responds with OK, and the interaction stops.

For an attacker trying to determine if two users are talking to each other via SimpleX Chat,
this side channel allows correlating packets leaving the sender, with the number of
messages exchanged by the receiver and the queue server.

Exploit Scenario

An attacker wants to determine if two users are talking to each other. They use the
described side channel and count how many messages leave the sender, and how many
messages are exchanged between the queue server and the receiver. This evidence allows
the attacker to determine whether these users are talking to each other.

Recommendations

Short term, make the number of messages exchanged when fetching a message on the
server independent of whether there is a message on the server or not. Note that if
multiple messages are on the server, this solution does not fully resolve the side-channel
issue, as the server will continue to deliver messages until none are available on the queue.

Long term, add the ability to introduce large delivery latency for push notifications,
hardening the ability to correctly correlate messages between two users.

Trail of Bits 11 SimpleX Chat Design Review
PUBLIC

3. A compromised transport protocol allows more efficient correlation attacks
Severity: Medium Difficulty: High
Type: Data Exposure Finding ID: TOB-SIMPLX-3

Target: protocol/xftp.md

Description

The threat model for the SMP and the XFTP protocol states that an attacker who
compromises the transport protocol cannot perform more efficient correlation attacks
than a non-compromised protocol. However, because the attacker can see which
commands are being sent, correlation attacks will be strictly more efficient.

- perform traffic correlation attacks with any increase in efficiency over a
non-compromised transport protocol

Figure 3.1: protocol/xftp.md#L566-L566

Without compromising the transport protocol, this correlation would be worse, since other
commands could add noise.

Exploit Scenario
An attacker counts how many FPUT commands were issued by the sender and correlates
that number with the number of FGET commands issued by a receiver.

Recommendations

Short term, correct the threat model and state that attackers who compromise the
transport protocol can correlate sets of users more efficiently than in the case of a
non-compromised transport protocol.

Long term, consider encrypting the command identifiers to hide the commands issued by a
user from an attacker who compromises the transport protocol.

Trail of Bits 12 SimpleX Chat Design Review
PUBLIC

https://github.com/simplex-chat/simplexmq/blob/d47c099ac94eda3342d02da2da76ef5cab5793ac/protocol/xftp.md#L566-L566

4. SHA256 is used as a KDF in XRCP
Severity: Informational Difficulty: N/A
Type: Cryptography Finding ID: TOB-SIMPLX-4

Target: protocol/xrcp.md

Description

The XRCP uses SHA-256 to derive session keys from Diffie-Helman and KEM keys. However,
SHA-256 is not designed to meet all of the requirements of a proper KDF. Since the secret is
derived from other high-entropy secrets, one solution is to use HKDF.

Key agreement for announcement packet and for session

Initial announcement is shared out-of-band (URI with xrcp scheme), and it is not
encrypted.

This announcement contains only DH keys, as KEM key is too large to include in QR
code, which are used to agree encryption key for host HELLO block. The host HELLO
block will contain DH key in plaintext part and KEM encapsulation (public) key in
encrypted part, that will be used to determine the shared secret (using SHA256 over
concatenated DH shared secret and KEM encapsulated secret) both for controller HELLO
response (that contains KEM ciphertext in plaintext part) and subsequent session
commands and responses.

During the next session the announcement is sent via encrypted multicast block. The
shared key for this announcement and for host HELLO block is determined using the
KEM shared secret from the previous session and DH shared secret computed using the
host DH key from the previous session and the new controller DH key from the
announcement.

For the session, the shared secret is computed again using the KEM shared secret
encapsulated by the controller using the new KEM key from the host HELLO block and
DH shared secret computed using the host DH key from HELLO block and the new
controller DH key from the announcement.

In pseudo-code:

// session 1

hostHelloSecret(1) = dhSecret(1)

sessionSecret(1) = sha256(dhSecret(1) || kemSecret(1)) // to encrypt session 1 data,
incl. controller hello

Figure 4.1: protocol/xrcp.md#L238-L253

Trail of Bits 13 SimpleX Chat Design Review
PUBLIC

https://github.com/simplex-chat/simplexmq/blob/d47c099ac94eda3342d02da2da76ef5cab5793ac/protocol/xrcp.md#L238-L253

In particular, define key-intermediate = HKDF.Extract(key-kem, DH-KDF-secret)
= HMAC(key-kem, DH-KDF-secret), where DH-KDF-secret is the output of HKDF on
the DH shared secret, HKDF .Extract(salt=0, DH-shared-secret). Define the final key
as HKDF .Expand(key-intermediate, info=Hash(transcript)). The hash of the
transcript (all the DH shares, KEM ciphertext) is generally recommended for binding
security.

Recommendations
Short term, replace the use of SHA-256 with HKDF as described above.

Long term, investigate other locations where SHA-256 is used to derive keys.

Trail of Bits 14 SimpleX Chat Design Review
PUBLIC

5. The XRCP protocol does not have perfect-forward secrecy or break-in
recovery within sessions

Severity: Informational Difficulty: High
Type: Cryptography Finding ID: TOB-SIMPLX-5

Target: protocol/xrcp.md

Description

The session key stays constant during an XRCP session. This means that if this key is
compromised after the session ends, all messages exchanged during the session will be
visible to an attacker who saves the encrypted session transcript.

On the other hand, if the key is leaked during the session, the key is rotated only after a
new session is announced, allowing an attacker to decrypt the session as it is occurring.

Exploit Scenario
An attacker saves the transcript of an XRCP session. A few years later, they obtain the
session key used to encrypt the messages and decrypt the XRCP session.

Recommendations

Short term, consider adding ratchets to rotate keys. These will provide the XRCP sessions
with perfect-forward secrecy and break-in recovery. Alternatively, consider using the
SimpleX messaging protocol as a primitive to build XRCP, instead of defining a new protocol
with different properties.

Long term, clearly document that this protocol does not have such properties, which are
generally expected from an end-to-end encrypted protocol. Document which keys an
attacker would need to break protocol properties.

Trail of Bits 15 SimpleX Chat Design Review
PUBLIC

6. Device compromise can be hidden in some scenarios
Severity: Medium Difficulty: High
Type: Cryptography Finding ID: TOB-SIMPLX-7

Target: protocol/overview-tjr.md

Description

The threat model states that an attacker who compromises Alice’s decrypted database can
“send messages from the user to their contacts,” but additionally states that “recipients will
detect it as soon as the user sends the next message, because the previous message hash
won't match (and potentially won't be able to decrypt them in case they don't keep the
previous ratchet keys).”

The second part of this statement implicitly relies on some assumptions that are not true in
all cases, such as that device compromises are read-only and that no queue rotation
occurs.

To illustrate the first assumption, suppose Mallory is able to not just copy Alice’s local state,
but also to modify it. Mallory could take Alice's keys for the chat with Bob, then replace the
on-device state for the chat with a chat with herself, and surreptitiously perform an
agent-in-the-middle attack between Alice and Bob. If Alice does not detect that the chat's
local state has changed, neither party would notice the ongoing compromise. Although in
most cases this type of attack is unlikely, SimpleX could enable high-risk users to detect this
situation. By using an off-device “state fingerprint” that a user can save and check against
on a regular basis - e.g., a digest of all safety numbers active at a certain point in time -
Alice would be able to detect this attack, and cease using SimpleX until she can re-establish
secure communication through out-of-band channels.

To illustrate the second assumption, suppose that Alice and Bob are communicating via the
SMP agent protocol. In this protocol, each party acts as the recipient of a different queue,
and it is possible for each recipient to “rotate” their queue to a different queue. If Mallory
has compromised Alice's local state, she can rotate to a different receive queue, causing all
of Bob’s messages to exclusively go to Mallory. Although Alice will still be able to send
messages that will be delivered to Bob, Bob may not be able to determine whether Alice or
the server had been compromised. Additionally, if Bob eventually rotates all of his own
receive queues, Alice will not be able to send any messages to Bob, and Mallory will be able
to assume Alice’s identity until she performs additional out-of-band communication with
Bob.

Trail of Bits 16 SimpleX Chat Design Review
PUBLIC

Recommendations

Short term, modify the threat model to explicitly describe what the adversary is and is not
allowed to do during device compromise, and which specific protocol configurations this
threat model applies to.

Long term, ensure that security documentation such as the threat model is always as
precise as possible.

Trail of Bits 17 SimpleX Chat Design Review
PUBLIC

7. User-correlating attack with introduced latency
Severity: Medium Difficulty: High
Type: Data Exposure Finding ID: TOB-SIMPLX-8

Target: protocol/simplex-messaging.md

Description
An attacker who controls network latency, or can hold the sender's packets for some time,
can correlate two users as follows:

e |If the attacker holds the sender’s packets but the receiver is still exchanging several
messages with the queue server, it means the receiver is probably talking to
someone else.

e |If the receiver starts exchanging messages with the server as soon as the sender's
packets are relayed, it is likely that these two users are talking to each other.

Exploit Scenario
An attacker wants to determine if two users are talking to each other. By controlling the
network latency, they can determine if that is the case.

Recommendations
Short term, make this scenario explicit in the threat model, so that users are aware of this
possibility.

Long term, add the ability to introduce random and large delays in message delivery,
diminishing the effects of an attacker controlling the network latency.

Trail of Bits 18 SimpleX Chat Design Review
PUBLIC

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category

Access Controls
Auditing and Logging
Authentication
Configuration
Cryptography

Data Exposure

Data Validation
Denial of Service
Error Reporting
Patching

Session Management
Testing

Timing

Undefined Behavior

Trail of Bits
PUBLIC

Description

Insufficient authorization or assessment of rights
Insufficient auditing of actions or logging of problems
Improper identification of users

Misconfigured servers, devices, or software components
A breach of system confidentiality or integrity
Exposure of sensitive information

Improper reliance on the structure or values of data
A system failure with an availability impact

Insecure or insufficient reporting of error conditions
Use of an outdated software package or library
Improper identification of authenticated users
Insufficient test methodology or test coverage

Race conditions or other order-of-operations flaws

Undefined behavior triggered within the system

19 SimpleX Chat Design Review

Severity Levels
Severity

Informational

Undetermined
Low

Medium

High

Description

The issue does not pose an immediate risk but is relevant to security best
practices.

The extent of the risk was not determined during this engagement.
The risk is small or is not one the client has indicated is important.

User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels
Difficulty
Undetermined

Low
Medium

High

Trail of Bits
PUBLIC

Description
The difficulty of exploitation was not determined during this engagement.

The flaw is well known; public tools for its exploitation exist or can be
scripted.

An attacker must write an exploit or will need in-depth knowledge of the
system.

An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

20 SimpleX Chat Design Review

