allow loading external gesture typing library

This commit is contained in:
Helium314 2023-06-28 09:27:07 +02:00
parent ac7ac4f907
commit 8123c79523
38 changed files with 187 additions and 61 deletions

View file

@ -0,0 +1,406 @@
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.inputmethod.keyboard;
import android.graphics.Rect;
import android.util.Log;
import org.dslul.openboard.inputmethod.keyboard.Key;
import org.dslul.openboard.inputmethod.keyboard.internal.TouchPositionCorrection;
import org.dslul.openboard.inputmethod.latin.common.Constants;
import org.dslul.openboard.inputmethod.latin.utils.JniUtils;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import javax.annotation.Nonnull;
public class ProximityInfo {
private static final String TAG = ProximityInfo.class.getSimpleName();
private static final boolean DEBUG = false;
// Must be equal to MAX_PROXIMITY_CHARS_SIZE in native/jni/src/defines.h
public static final int MAX_PROXIMITY_CHARS_SIZE = 16;
/** Number of key widths from current touch point to search for nearest keys. */
private static final float SEARCH_DISTANCE = 1.2f;
@Nonnull
private static final List<Key> EMPTY_KEY_LIST = Collections.emptyList();
private static final float DEFAULT_TOUCH_POSITION_CORRECTION_RADIUS = 0.15f;
private final int mGridWidth;
private final int mGridHeight;
private final int mGridSize;
private final int mCellWidth;
private final int mCellHeight;
// TODO: Find a proper name for mKeyboardMinWidth
private final int mKeyboardMinWidth;
private final int mKeyboardHeight;
private final int mMostCommonKeyWidth;
private final int mMostCommonKeyHeight;
@Nonnull
private final List<Key> mSortedKeys;
@Nonnull
private final List<Key>[] mGridNeighbors;
@SuppressWarnings("unchecked")
public ProximityInfo(final int gridWidth, final int gridHeight, final int minWidth, final int height,
final int mostCommonKeyWidth, final int mostCommonKeyHeight,
@Nonnull final List<Key> sortedKeys,
@Nonnull final TouchPositionCorrection touchPositionCorrection) {
mGridWidth = gridWidth;
mGridHeight = gridHeight;
mGridSize = mGridWidth * mGridHeight;
mCellWidth = (minWidth + mGridWidth - 1) / mGridWidth;
mCellHeight = (height + mGridHeight - 1) / mGridHeight;
mKeyboardMinWidth = minWidth;
mKeyboardHeight = height;
mMostCommonKeyHeight = mostCommonKeyHeight;
mMostCommonKeyWidth = mostCommonKeyWidth;
mSortedKeys = sortedKeys;
mGridNeighbors = new List[mGridSize];
if (minWidth == 0 || height == 0) {
// No proximity required. Keyboard might be more keys keyboard.
return;
}
computeNearestNeighbors();
mNativeProximityInfo = createNativeProximityInfo(touchPositionCorrection);
}
private long mNativeProximityInfo;
static {
JniUtils.loadNativeLibrary();
}
// TODO: Stop passing proximityCharsArray
private static native long setProximityInfoNative(int displayWidth, int displayHeight,
int gridWidth, int gridHeight, int mostCommonKeyWidth, int mostCommonKeyHeight,
int[] proximityCharsArray, int keyCount, int[] keyXCoordinates, int[] keyYCoordinates,
int[] keyWidths, int[] keyHeights, int[] keyCharCodes, float[] sweetSpotCenterXs,
float[] sweetSpotCenterYs, float[] sweetSpotRadii);
private static native void releaseProximityInfoNative(long nativeProximityInfo);
public static boolean needsProximityInfo(final Key key) {
// Don't include special keys into ProximityInfo.
return key.getCode() >= Constants.CODE_SPACE;
}
private static int getProximityInfoKeysCount(final List<Key> keys) {
int count = 0;
for (final Key key : keys) {
if (needsProximityInfo(key)) {
count++;
}
}
return count;
}
private long createNativeProximityInfo(
@Nonnull final TouchPositionCorrection touchPositionCorrection) {
final List<Key>[] gridNeighborKeys = mGridNeighbors;
final int[] proximityCharsArray = new int[mGridSize * MAX_PROXIMITY_CHARS_SIZE];
Arrays.fill(proximityCharsArray, Constants.NOT_A_CODE);
for (int i = 0; i < mGridSize; ++i) {
final List<Key> neighborKeys = gridNeighborKeys[i];
final int proximityCharsLength = neighborKeys.size();
int infoIndex = i * MAX_PROXIMITY_CHARS_SIZE;
for (int j = 0; j < proximityCharsLength; ++j) {
final Key neighborKey = neighborKeys.get(j);
// Excluding from proximityCharsArray
if (!needsProximityInfo(neighborKey)) {
continue;
}
proximityCharsArray[infoIndex] = neighborKey.getCode();
infoIndex++;
}
}
if (DEBUG) {
final StringBuilder sb = new StringBuilder();
for (int i = 0; i < mGridSize; i++) {
sb.setLength(0);
for (int j = 0; j < MAX_PROXIMITY_CHARS_SIZE; j++) {
final int code = proximityCharsArray[i * MAX_PROXIMITY_CHARS_SIZE + j];
if (code == Constants.NOT_A_CODE) {
break;
}
if (sb.length() > 0) sb.append(" ");
sb.append(Constants.printableCode(code));
}
Log.d(TAG, "proxmityChars["+i+"]: " + sb);
}
}
final List<Key> sortedKeys = mSortedKeys;
final int keyCount = getProximityInfoKeysCount(sortedKeys);
final int[] keyXCoordinates = new int[keyCount];
final int[] keyYCoordinates = new int[keyCount];
final int[] keyWidths = new int[keyCount];
final int[] keyHeights = new int[keyCount];
final int[] keyCharCodes = new int[keyCount];
final float[] sweetSpotCenterXs;
final float[] sweetSpotCenterYs;
final float[] sweetSpotRadii;
for (int infoIndex = 0, keyIndex = 0; keyIndex < sortedKeys.size(); keyIndex++) {
final Key key = sortedKeys.get(keyIndex);
// Excluding from key coordinate arrays
if (!needsProximityInfo(key)) {
continue;
}
keyXCoordinates[infoIndex] = key.getX();
keyYCoordinates[infoIndex] = key.getY();
keyWidths[infoIndex] = key.getWidth();
keyHeights[infoIndex] = key.getHeight();
keyCharCodes[infoIndex] = key.getCode();
infoIndex++;
}
if (touchPositionCorrection.isValid()) {
if (DEBUG) {
Log.d(TAG, "touchPositionCorrection: ON");
}
sweetSpotCenterXs = new float[keyCount];
sweetSpotCenterYs = new float[keyCount];
sweetSpotRadii = new float[keyCount];
final int rows = touchPositionCorrection.getRows();
final float defaultRadius = DEFAULT_TOUCH_POSITION_CORRECTION_RADIUS
* (float)Math.hypot(mMostCommonKeyWidth, mMostCommonKeyHeight);
for (int infoIndex = 0, keyIndex = 0; keyIndex < sortedKeys.size(); keyIndex++) {
final Key key = sortedKeys.get(keyIndex);
// Excluding from touch position correction arrays
if (!needsProximityInfo(key)) {
continue;
}
final Rect hitBox = key.getHitBox();
sweetSpotCenterXs[infoIndex] = hitBox.exactCenterX();
sweetSpotCenterYs[infoIndex] = hitBox.exactCenterY();
sweetSpotRadii[infoIndex] = defaultRadius;
final int row = hitBox.top / mMostCommonKeyHeight;
if (row < rows) {
final int hitBoxWidth = hitBox.width();
final int hitBoxHeight = hitBox.height();
final float hitBoxDiagonal = (float)Math.hypot(hitBoxWidth, hitBoxHeight);
sweetSpotCenterXs[infoIndex] +=
touchPositionCorrection.getX(row) * hitBoxWidth;
sweetSpotCenterYs[infoIndex] +=
touchPositionCorrection.getY(row) * hitBoxHeight;
sweetSpotRadii[infoIndex] =
touchPositionCorrection.getRadius(row) * hitBoxDiagonal;
}
if (DEBUG) {
Log.d(TAG, String.format(
" [%2d] row=%d x/y/r=%7.2f/%7.2f/%5.2f %s code=%s", infoIndex, row,
sweetSpotCenterXs[infoIndex], sweetSpotCenterYs[infoIndex],
sweetSpotRadii[infoIndex], (row < rows ? "correct" : "default"),
Constants.printableCode(key.getCode())));
}
infoIndex++;
}
} else {
sweetSpotCenterXs = sweetSpotCenterYs = sweetSpotRadii = null;
if (DEBUG) {
Log.d(TAG, "touchPositionCorrection: OFF");
}
}
// TODO: Stop passing proximityCharsArray
return setProximityInfoNative(mKeyboardMinWidth, mKeyboardHeight, mGridWidth, mGridHeight,
mMostCommonKeyWidth, mMostCommonKeyHeight, proximityCharsArray, keyCount,
keyXCoordinates, keyYCoordinates, keyWidths, keyHeights, keyCharCodes,
sweetSpotCenterXs, sweetSpotCenterYs, sweetSpotRadii);
}
public long getNativeProximityInfo() {
return mNativeProximityInfo;
}
@Override
protected void finalize() throws Throwable {
try {
if (mNativeProximityInfo != 0) {
releaseProximityInfoNative(mNativeProximityInfo);
mNativeProximityInfo = 0;
}
} finally {
super.finalize();
}
}
private void computeNearestNeighbors() {
final int defaultWidth = mMostCommonKeyWidth;
final int keyCount = mSortedKeys.size();
final int gridSize = mGridNeighbors.length;
final int threshold = (int) (defaultWidth * SEARCH_DISTANCE);
final int thresholdSquared = threshold * threshold;
// Round-up so we don't have any pixels outside the grid
final int lastPixelXCoordinate = mGridWidth * mCellWidth - 1;
final int lastPixelYCoordinate = mGridHeight * mCellHeight - 1;
// For large layouts, 'neighborsFlatBuffer' is about 80k of memory: gridSize is usually 512,
// keycount is about 40 and a pointer to a Key is 4 bytes. This contains, for each cell,
// enough space for as many keys as there are on the keyboard. Hence, every
// keycount'th element is the start of a new cell, and each of these virtual subarrays
// start empty with keycount spaces available. This fills up gradually in the loop below.
// Since in the practice each cell does not have a lot of neighbors, most of this space is
// actually just empty padding in this fixed-size buffer.
final Key[] neighborsFlatBuffer = new Key[gridSize * keyCount];
final int[] neighborCountPerCell = new int[gridSize];
final int halfCellWidth = mCellWidth / 2;
final int halfCellHeight = mCellHeight / 2;
for (final Key key : mSortedKeys) {
if (key.isSpacer()) continue;
/* HOW WE PRE-SELECT THE CELLS (iterate over only the relevant cells, instead of all of them)
We want to compute the distance for keys that are in the cells that are close enough to the
key border, as this method is performance-critical. These keys are represented with 'star'
background on the diagram below. Let's consider the Y case first.
We want to select the cells which center falls between the top of the key minus the threshold,
and the bottom of the key plus the threshold.
topPixelWithinThreshold is key.mY - threshold, and bottomPixelWithinThreshold is
key.mY + key.mHeight + threshold.
Then we need to compute the center of the top row that we need to evaluate, as we'll iterate
from there.
(0,0)----> x
| .-------------------------------------------.
| | | | | | | | | | | | |
| |---+---+---+---+---+---+---+---+---+---+---| .- top of top cell (aligned on the grid)
| | | | | | | | | | | | | |
| |-----------+---+---+---+---+---+---+---+---|---' v
| | | | |***|***|*_________________________ topPixelWithinThreshold | yDeltaToGrid
| |---+---+---+-----^-+-|-+---+---+---+---+---| ^
| | | | |***|*|*|*|*|***|***| | | | ______________________________________
v |---+---+--threshold--|-+---+---+---+---+---| |
| | | |***|*|*|*|*|***|***| | | | | Starting from key.mY, we substract
y |---+---+---+---+-v-+-|-+---+---+---+---+---| | thresholdBase and get the top pixel
| | | |***|**########------------------- key.mY | within the threshold. We align that on
|---+---+---+---+--#+---+-#-+---+---+---+---| | the grid by computing the delta to the
| | | |***|**#|***|*#*|***| | | | | grid, and get the top of the top cell.
|---+---+---+---+--#+---+-#-+---+---+---+---| |
| | | |***|**########*|***| | | | | Adding half the cell height to the top
|---+---+---+---+---+-|-+---+---+---+---+---| | of the top cell, we get the middle of
| | | |***|***|*|*|***|***| | | | | the top cell (yMiddleOfTopCell).
|---+---+---+---+---+-|-+---+---+---+---+---| |
| | | |***|***|*|*|***|***| | | | |
|---+---+---+---+---+-|________________________ yEnd | Since we only want to add the key to
| | | | | | | (bottomPixelWithinThreshold) | the proximity if it's close enough to
|---+---+---+---+---+---+---+---+---+---+---| | the center of the cell, we only need
| | | | | | | | | | | | | to compute for these cells where
'---'---'---'---'---'---'---'---'---'---'---' | topPixelWithinThreshold is above the
(positive x,y) | center of the cell. This is the case
| when yDeltaToGrid is less than half
[Zoomed in diagram] | the height of the cell.
+-------+-------+-------+-------+-------+ |
| | | | | | | On the zoomed in diagram, on the right
| | | | | | | the topPixelWithinThreshold (represented
| | | | | | top of | with an = sign) is below and we can skip
+-------+-------+-------+--v----+-------+ .. top cell | this cell, while on the left it's above
| | = topPixelWT | | yDeltaToGrid | and we need to compute for this cell.
|..yStart.|.....|.......|..|....|.......|... y middle | Thus, if yDeltaToGrid is more than half
| (left)| | | ^ = | | of top cell | the height of the cell, we start the
+-------+-|-----+-------+----|--+-------+ | iteration one cell below the top cell,
| | | | | | | | | else we start it on the top cell. This
|.......|.|.....|.......|....|..|.....yStart (right) | is stored in yStart.
Since we only want to go up to bottomPixelWithinThreshold, and we only iterate on the center
of the keys, we can stop as soon as the y value exceeds bottomPixelThreshold, so we don't
have to align this on the center of the key. Hence, we don't need a separate value for
bottomPixelWithinThreshold and call this yEnd right away.
*/
final int keyX = key.getX();
final int keyY = key.getY();
final int topPixelWithinThreshold = keyY - threshold;
final int yDeltaToGrid = topPixelWithinThreshold % mCellHeight;
final int yMiddleOfTopCell = topPixelWithinThreshold - yDeltaToGrid + halfCellHeight;
final int yStart = Math.max(halfCellHeight,
yMiddleOfTopCell + (yDeltaToGrid <= halfCellHeight ? 0 : mCellHeight));
final int yEnd = Math.min(lastPixelYCoordinate, keyY + key.getHeight() + threshold);
final int leftPixelWithinThreshold = keyX - threshold;
final int xDeltaToGrid = leftPixelWithinThreshold % mCellWidth;
final int xMiddleOfLeftCell = leftPixelWithinThreshold - xDeltaToGrid + halfCellWidth;
final int xStart = Math.max(halfCellWidth,
xMiddleOfLeftCell + (xDeltaToGrid <= halfCellWidth ? 0 : mCellWidth));
final int xEnd = Math.min(lastPixelXCoordinate, keyX + key.getWidth() + threshold);
int baseIndexOfCurrentRow = (yStart / mCellHeight) * mGridWidth + (xStart / mCellWidth);
for (int centerY = yStart; centerY <= yEnd; centerY += mCellHeight) {
int index = baseIndexOfCurrentRow;
for (int centerX = xStart; centerX <= xEnd; centerX += mCellWidth) {
if (key.squaredDistanceToEdge(centerX, centerY) < thresholdSquared) {
neighborsFlatBuffer[index * keyCount + neighborCountPerCell[index]] = key;
++neighborCountPerCell[index];
}
++index;
}
baseIndexOfCurrentRow += mGridWidth;
}
}
for (int i = 0; i < gridSize; ++i) {
final int indexStart = i * keyCount;
final int indexEnd = indexStart + neighborCountPerCell[i];
final ArrayList<Key> neighbors = new ArrayList<>(indexEnd - indexStart);
for (int index = indexStart; index < indexEnd; index++) {
neighbors.add(neighborsFlatBuffer[index]);
}
mGridNeighbors[i] = Collections.unmodifiableList(neighbors);
}
}
public void fillArrayWithNearestKeyCodes(final int x, final int y, final int primaryKeyCode,
final int[] dest) {
final int destLength = dest.length;
if (destLength < 1) {
return;
}
int index = 0;
if (primaryKeyCode > Constants.CODE_SPACE) {
dest[index++] = primaryKeyCode;
}
final List<Key> nearestKeys = getNearestKeys(x, y);
for (Key key : nearestKeys) {
if (index >= destLength) {
break;
}
final int code = key.getCode();
if (code <= Constants.CODE_SPACE) {
break;
}
dest[index++] = code;
}
if (index < destLength) {
dest[index] = Constants.NOT_A_CODE;
}
}
@Nonnull
public List<Key> getNearestKeys(final int x, final int y) {
if (x >= 0 && x < mKeyboardMinWidth && y >= 0 && y < mKeyboardHeight) {
int index = (y / mCellHeight) * mGridWidth + (x / mCellWidth);
if (index < mGridSize) {
return mGridNeighbors[index];
}
}
return EMPTY_KEY_LIST;
}
}

View file

@ -0,0 +1,676 @@
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.inputmethod.latin;
import android.text.TextUtils;
import android.util.Log;
import android.util.SparseArray;
import org.dslul.openboard.inputmethod.annotations.UsedForTesting;
import org.dslul.openboard.inputmethod.latin.Dictionary;
import org.dslul.openboard.inputmethod.latin.NgramContext;
import org.dslul.openboard.inputmethod.latin.SuggestedWords.SuggestedWordInfo;
import org.dslul.openboard.inputmethod.latin.common.ComposedData;
import org.dslul.openboard.inputmethod.latin.common.Constants;
import org.dslul.openboard.inputmethod.latin.common.FileUtils;
import org.dslul.openboard.inputmethod.latin.common.InputPointers;
import org.dslul.openboard.inputmethod.latin.common.StringUtils;
import org.dslul.openboard.inputmethod.latin.makedict.DictionaryHeader;
import org.dslul.openboard.inputmethod.latin.makedict.FormatSpec;
import org.dslul.openboard.inputmethod.latin.makedict.FormatSpec.DictionaryOptions;
import org.dslul.openboard.inputmethod.latin.makedict.UnsupportedFormatException;
import org.dslul.openboard.inputmethod.latin.makedict.WordProperty;
import org.dslul.openboard.inputmethod.latin.settings.SettingsValuesForSuggestion;
import com.android.inputmethod.latin.utils.BinaryDictionaryUtils;
import org.dslul.openboard.inputmethod.latin.utils.JniUtils;
import com.android.inputmethod.latin.utils.WordInputEventForPersonalization;
import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Locale;
import java.util.Map;
import javax.annotation.Nonnull;
/**
* Implements a static, compacted, binary dictionary of standard words.
*/
// TODO: All methods which should be locked need to have a suffix "Locked".
public final class BinaryDictionary extends Dictionary {
private static final String TAG = BinaryDictionary.class.getSimpleName();
// The cutoff returned by native for auto-commit confidence.
// Must be equal to CONFIDENCE_TO_AUTO_COMMIT in native/jni/src/defines.h
private static final int CONFIDENCE_TO_AUTO_COMMIT = 1000000;
public static final int DICTIONARY_MAX_WORD_LENGTH = 48;
public static final int MAX_PREV_WORD_COUNT_FOR_N_GRAM = 3;
@UsedForTesting
public static final String UNIGRAM_COUNT_QUERY = "UNIGRAM_COUNT";
@UsedForTesting
public static final String BIGRAM_COUNT_QUERY = "BIGRAM_COUNT";
@UsedForTesting
public static final String MAX_UNIGRAM_COUNT_QUERY = "MAX_UNIGRAM_COUNT";
@UsedForTesting
public static final String MAX_BIGRAM_COUNT_QUERY = "MAX_BIGRAM_COUNT";
public static final int NOT_A_VALID_TIMESTAMP = -1;
// Format to get unigram flags from native side via getWordPropertyNative().
private static final int FORMAT_WORD_PROPERTY_OUTPUT_FLAG_COUNT = 5;
private static final int FORMAT_WORD_PROPERTY_IS_NOT_A_WORD_INDEX = 0;
private static final int FORMAT_WORD_PROPERTY_IS_POSSIBLY_OFFENSIVE_INDEX = 1;
private static final int FORMAT_WORD_PROPERTY_HAS_NGRAMS_INDEX = 2;
private static final int FORMAT_WORD_PROPERTY_HAS_SHORTCUTS_INDEX = 3;
private static final int FORMAT_WORD_PROPERTY_IS_BEGINNING_OF_SENTENCE_INDEX = 4;
// Format to get probability and historical info from native side via getWordPropertyNative().
public static final int FORMAT_WORD_PROPERTY_OUTPUT_PROBABILITY_INFO_COUNT = 4;
public static final int FORMAT_WORD_PROPERTY_PROBABILITY_INDEX = 0;
public static final int FORMAT_WORD_PROPERTY_TIMESTAMP_INDEX = 1;
public static final int FORMAT_WORD_PROPERTY_LEVEL_INDEX = 2;
public static final int FORMAT_WORD_PROPERTY_COUNT_INDEX = 3;
public static final String DICT_FILE_NAME_SUFFIX_FOR_MIGRATION = ".migrate";
public static final String DIR_NAME_SUFFIX_FOR_RECORD_MIGRATION = ".migrating";
private long mNativeDict;
private final long mDictSize;
private final String mDictFilePath;
private final boolean mUseFullEditDistance;
private final boolean mIsUpdatable;
private boolean mHasUpdated;
private final SparseArray<DicTraverseSession> mDicTraverseSessions = new SparseArray<>();
// TODO: There should be a way to remove used DicTraverseSession objects from
// {@code mDicTraverseSessions}.
private DicTraverseSession getTraverseSession(final int traverseSessionId) {
synchronized(mDicTraverseSessions) {
DicTraverseSession traverseSession = mDicTraverseSessions.get(traverseSessionId);
if (traverseSession == null) {
traverseSession = new DicTraverseSession(mLocale, mNativeDict, mDictSize);
mDicTraverseSessions.put(traverseSessionId, traverseSession);
}
return traverseSession;
}
}
/**
* Constructs binary dictionary using existing dictionary file.
* @param filename the name of the file to read through native code.
* @param offset the offset of the dictionary data within the file.
* @param length the length of the binary data.
* @param useFullEditDistance whether to use the full edit distance in suggestions
* @param dictType the dictionary type, as a human-readable string
* @param isUpdatable whether to open the dictionary file in writable mode.
*/
public BinaryDictionary(final String filename, final long offset, final long length,
final boolean useFullEditDistance, final Locale locale, final String dictType,
final boolean isUpdatable) {
super(dictType, locale);
mDictSize = length;
mDictFilePath = filename;
mIsUpdatable = isUpdatable;
mHasUpdated = false;
mUseFullEditDistance = useFullEditDistance;
loadDictionary(filename, offset, length, isUpdatable);
}
/**
* Constructs binary dictionary on memory.
* @param filename the name of the file used to flush.
* @param useFullEditDistance whether to use the full edit distance in suggestions
* @param dictType the dictionary type, as a human-readable string
* @param formatVersion the format version of the dictionary
* @param attributeMap the attributes of the dictionary
*/
public BinaryDictionary(final String filename, final boolean useFullEditDistance,
final Locale locale, final String dictType, final long formatVersion,
final Map<String, String> attributeMap) {
super(dictType, locale);
mDictSize = 0;
mDictFilePath = filename;
// On memory dictionary is always updatable.
mIsUpdatable = true;
mHasUpdated = false;
mUseFullEditDistance = useFullEditDistance;
final String[] keyArray = new String[attributeMap.size()];
final String[] valueArray = new String[attributeMap.size()];
int index = 0;
for (final String key : attributeMap.keySet()) {
keyArray[index] = key;
valueArray[index] = attributeMap.get(key);
index++;
}
mNativeDict = createOnMemoryNative(formatVersion, locale.toString(), keyArray, valueArray);
}
static {
JniUtils.loadNativeLibrary();
}
private static native long openNative(String sourceDir, long dictOffset, long dictSize,
boolean isUpdatable);
private static native long createOnMemoryNative(long formatVersion,
String locale, String[] attributeKeyStringArray, String[] attributeValueStringArray);
private static native void getHeaderInfoNative(long dict, int[] outHeaderSize,
int[] outFormatVersion, ArrayList<int[]> outAttributeKeys,
ArrayList<int[]> outAttributeValues);
private static native boolean flushNative(long dict, String filePath);
private static native boolean needsToRunGCNative(long dict, boolean mindsBlockByGC);
private static native boolean flushWithGCNative(long dict, String filePath);
private static native void closeNative(long dict);
private static native int getFormatVersionNative(long dict);
private static native int getProbabilityNative(long dict, int[] word);
private static native int getMaxProbabilityOfExactMatchesNative(long dict, int[] word);
private static native int getNgramProbabilityNative(long dict, int[][] prevWordCodePointArrays,
boolean[] isBeginningOfSentenceArray, int[] word);
private static native void getWordPropertyNative(long dict, int[] word,
boolean isBeginningOfSentence, int[] outCodePoints, boolean[] outFlags,
int[] outProbabilityInfo, ArrayList<int[][]> outNgramPrevWordsArray,
ArrayList<boolean[]> outNgramPrevWordIsBeginningOfSentenceArray,
ArrayList<int[]> outNgramTargets, ArrayList<int[]> outNgramProbabilityInfo,
ArrayList<int[]> outShortcutTargets, ArrayList<Integer> outShortcutProbabilities);
private static native int getNextWordNative(long dict, int token, int[] outCodePoints,
boolean[] outIsBeginningOfSentence);
private static native void getSuggestionsNative(long dict, long proximityInfo,
long traverseSession, int[] xCoordinates, int[] yCoordinates, int[] times,
int[] pointerIds, int[] inputCodePoints, int inputSize, int[] suggestOptions,
int[][] prevWordCodePointArrays, boolean[] isBeginningOfSentenceArray,
int prevWordCount, int[] outputSuggestionCount, int[] outputCodePoints,
int[] outputScores, int[] outputIndices, int[] outputTypes,
int[] outputAutoCommitFirstWordConfidence,
float[] inOutWeightOfLangModelVsSpatialModel);
private static native boolean addUnigramEntryNative(long dict, int[] word, int probability,
int[] shortcutTarget, int shortcutProbability, boolean isBeginningOfSentence,
boolean isNotAWord, boolean isPossiblyOffensive, int timestamp);
private static native boolean removeUnigramEntryNative(long dict, int[] word);
private static native boolean addNgramEntryNative(long dict,
int[][] prevWordCodePointArrays, boolean[] isBeginningOfSentenceArray,
int[] word, int probability, int timestamp);
private static native boolean removeNgramEntryNative(long dict,
int[][] prevWordCodePointArrays, boolean[] isBeginningOfSentenceArray, int[] word);
private static native boolean updateEntriesForWordWithNgramContextNative(long dict,
int[][] prevWordCodePointArrays, boolean[] isBeginningOfSentenceArray,
int[] word, boolean isValidWord, int count, int timestamp);
private static native int updateEntriesForInputEventsNative(long dict,
WordInputEventForPersonalization[] inputEvents, int startIndex);
private static native String getPropertyNative(long dict, String query);
private static native boolean isCorruptedNative(long dict);
private static native boolean migrateNative(long dict, String dictFilePath,
long newFormatVersion);
// TODO: Move native dict into session
private void loadDictionary(final String path, final long startOffset,
final long length, final boolean isUpdatable) {
mHasUpdated = false;
mNativeDict = openNative(path, startOffset, length, isUpdatable);
}
// TODO: Check isCorrupted() for main dictionaries.
public boolean isCorrupted() {
if (!isValidDictionary()) {
return false;
}
if (!isCorruptedNative(mNativeDict)) {
return false;
}
// TODO: Record the corruption.
Log.e(TAG, "BinaryDictionary (" + mDictFilePath + ") is corrupted.");
Log.e(TAG, "locale: " + mLocale);
Log.e(TAG, "dict size: " + mDictSize);
Log.e(TAG, "updatable: " + mIsUpdatable);
return true;
}
public DictionaryHeader getHeader() throws UnsupportedFormatException {
if (mNativeDict == 0) {
return null;
}
final int[] outHeaderSize = new int[1];
final int[] outFormatVersion = new int[1];
final ArrayList<int[]> outAttributeKeys = new ArrayList<>();
final ArrayList<int[]> outAttributeValues = new ArrayList<>();
getHeaderInfoNative(mNativeDict, outHeaderSize, outFormatVersion, outAttributeKeys,
outAttributeValues);
final HashMap<String, String> attributes = new HashMap<>();
for (int i = 0; i < outAttributeKeys.size(); i++) {
final String attributeKey = StringUtils.getStringFromNullTerminatedCodePointArray(
outAttributeKeys.get(i));
final String attributeValue = StringUtils.getStringFromNullTerminatedCodePointArray(
outAttributeValues.get(i));
attributes.put(attributeKey, attributeValue);
}
final boolean hasHistoricalInfo = DictionaryHeader.ATTRIBUTE_VALUE_TRUE.equals(
attributes.get(DictionaryHeader.HAS_HISTORICAL_INFO_KEY));
return new DictionaryHeader(outHeaderSize[0], new DictionaryOptions(attributes),
new FormatSpec.FormatOptions(outFormatVersion[0], hasHistoricalInfo));
}
@Override
public ArrayList<SuggestedWordInfo> getSuggestions(final ComposedData composedData,
final NgramContext ngramContext, final long proximityInfoHandle,
final SettingsValuesForSuggestion settingsValuesForSuggestion,
final int sessionId, final float weightForLocale,
final float[] inOutWeightOfLangModelVsSpatialModel) {
if (!isValidDictionary()) {
return null;
}
final DicTraverseSession session = getTraverseSession(sessionId);
Arrays.fill(session.mInputCodePoints, Constants.NOT_A_CODE);
ngramContext.outputToArray(session.mPrevWordCodePointArrays,
session.mIsBeginningOfSentenceArray);
final InputPointers inputPointers = composedData.mInputPointers;
final boolean isGesture = composedData.mIsBatchMode;
final int inputSize;
if (!isGesture) {
inputSize =
composedData.copyCodePointsExceptTrailingSingleQuotesAndReturnCodePointCount(
session.mInputCodePoints);
if (inputSize < 0) {
return null;
}
} else {
inputSize = inputPointers.getPointerSize();
}
session.mNativeSuggestOptions.setUseFullEditDistance(mUseFullEditDistance);
session.mNativeSuggestOptions.setIsGesture(isGesture);
session.mNativeSuggestOptions.setBlockOffensiveWords(
settingsValuesForSuggestion.mBlockPotentiallyOffensive);
session.mNativeSuggestOptions.setWeightForLocale(weightForLocale);
if (inOutWeightOfLangModelVsSpatialModel != null) {
session.mInputOutputWeightOfLangModelVsSpatialModel[0] =
inOutWeightOfLangModelVsSpatialModel[0];
} else {
session.mInputOutputWeightOfLangModelVsSpatialModel[0] =
Dictionary.NOT_A_WEIGHT_OF_LANG_MODEL_VS_SPATIAL_MODEL;
}
// TOOD: Pass multiple previous words information for n-gram.
getSuggestionsNative(mNativeDict, proximityInfoHandle,
getTraverseSession(sessionId).getSession(), inputPointers.getXCoordinates(),
inputPointers.getYCoordinates(), inputPointers.getTimes(),
inputPointers.getPointerIds(), session.mInputCodePoints, inputSize,
session.mNativeSuggestOptions.getOptions(), session.mPrevWordCodePointArrays,
session.mIsBeginningOfSentenceArray, ngramContext.getPrevWordCount(),
session.mOutputSuggestionCount, session.mOutputCodePoints, session.mOutputScores,
session.mSpaceIndices, session.mOutputTypes,
session.mOutputAutoCommitFirstWordConfidence,
session.mInputOutputWeightOfLangModelVsSpatialModel);
if (inOutWeightOfLangModelVsSpatialModel != null) {
inOutWeightOfLangModelVsSpatialModel[0] =
session.mInputOutputWeightOfLangModelVsSpatialModel[0];
}
final int count = session.mOutputSuggestionCount[0];
final ArrayList<SuggestedWordInfo> suggestions = new ArrayList<>();
for (int j = 0; j < count; ++j) {
final int start = j * DICTIONARY_MAX_WORD_LENGTH;
int len = 0;
while (len < DICTIONARY_MAX_WORD_LENGTH
&& session.mOutputCodePoints[start + len] != 0) {
++len;
}
if (len > 0) {
suggestions.add(new SuggestedWordInfo(
new String(session.mOutputCodePoints, start, len),
"" /* prevWordsContext */,
(int)(session.mOutputScores[j] * weightForLocale),
session.mOutputTypes[j],
this /* sourceDict */,
session.mSpaceIndices[j] /* indexOfTouchPointOfSecondWord */,
session.mOutputAutoCommitFirstWordConfidence[0]));
}
}
return suggestions;
}
public boolean isValidDictionary() {
return mNativeDict != 0;
}
public int getFormatVersion() {
return getFormatVersionNative(mNativeDict);
}
@Override
public boolean isInDictionary(final String word) {
return getFrequency(word) != NOT_A_PROBABILITY;
}
@Override
public int getFrequency(final String word) {
if (TextUtils.isEmpty(word)) {
return NOT_A_PROBABILITY;
}
final int[] codePoints = StringUtils.toCodePointArray(word);
return getProbabilityNative(mNativeDict, codePoints);
}
@Override
public int getMaxFrequencyOfExactMatches(final String word) {
if (TextUtils.isEmpty(word)) {
return NOT_A_PROBABILITY;
}
final int[] codePoints = StringUtils.toCodePointArray(word);
return getMaxProbabilityOfExactMatchesNative(mNativeDict, codePoints);
}
@UsedForTesting
public boolean isValidNgram(final NgramContext ngramContext, final String word) {
return getNgramProbability(ngramContext, word) != NOT_A_PROBABILITY;
}
public int getNgramProbability(final NgramContext ngramContext, final String word) {
if (!ngramContext.isValid() || TextUtils.isEmpty(word)) {
return NOT_A_PROBABILITY;
}
final int[][] prevWordCodePointArrays = new int[ngramContext.getPrevWordCount()][];
final boolean[] isBeginningOfSentenceArray = new boolean[ngramContext.getPrevWordCount()];
ngramContext.outputToArray(prevWordCodePointArrays, isBeginningOfSentenceArray);
final int[] wordCodePoints = StringUtils.toCodePointArray(word);
return getNgramProbabilityNative(mNativeDict, prevWordCodePointArrays,
isBeginningOfSentenceArray, wordCodePoints);
}
public WordProperty getWordProperty(final String word, final boolean isBeginningOfSentence) {
if (word == null) {
return null;
}
final int[] codePoints = StringUtils.toCodePointArray(word);
final int[] outCodePoints = new int[DICTIONARY_MAX_WORD_LENGTH];
final boolean[] outFlags = new boolean[FORMAT_WORD_PROPERTY_OUTPUT_FLAG_COUNT];
final int[] outProbabilityInfo =
new int[FORMAT_WORD_PROPERTY_OUTPUT_PROBABILITY_INFO_COUNT];
final ArrayList<int[][]> outNgramPrevWordsArray = new ArrayList<>();
final ArrayList<boolean[]> outNgramPrevWordIsBeginningOfSentenceArray =
new ArrayList<>();
final ArrayList<int[]> outNgramTargets = new ArrayList<>();
final ArrayList<int[]> outNgramProbabilityInfo = new ArrayList<>();
final ArrayList<int[]> outShortcutTargets = new ArrayList<>();
final ArrayList<Integer> outShortcutProbabilities = new ArrayList<>();
getWordPropertyNative(mNativeDict, codePoints, isBeginningOfSentence, outCodePoints,
outFlags, outProbabilityInfo, outNgramPrevWordsArray,
outNgramPrevWordIsBeginningOfSentenceArray, outNgramTargets,
outNgramProbabilityInfo, outShortcutTargets, outShortcutProbabilities);
return new WordProperty(codePoints,
outFlags[FORMAT_WORD_PROPERTY_IS_NOT_A_WORD_INDEX],
outFlags[FORMAT_WORD_PROPERTY_IS_POSSIBLY_OFFENSIVE_INDEX],
outFlags[FORMAT_WORD_PROPERTY_HAS_NGRAMS_INDEX],
outFlags[FORMAT_WORD_PROPERTY_HAS_SHORTCUTS_INDEX],
outFlags[FORMAT_WORD_PROPERTY_IS_BEGINNING_OF_SENTENCE_INDEX], outProbabilityInfo,
outNgramPrevWordsArray, outNgramPrevWordIsBeginningOfSentenceArray,
outNgramTargets, outNgramProbabilityInfo, outShortcutTargets,
outShortcutProbabilities);
}
public static class GetNextWordPropertyResult {
public WordProperty mWordProperty;
public int mNextToken;
public GetNextWordPropertyResult(final WordProperty wordProperty, final int nextToken) {
mWordProperty = wordProperty;
mNextToken = nextToken;
}
}
/**
* Method to iterate all words in the dictionary for makedict.
* If token is 0, this method newly starts iterating the dictionary.
*/
public GetNextWordPropertyResult getNextWordProperty(final int token) {
final int[] codePoints = new int[DICTIONARY_MAX_WORD_LENGTH];
final boolean[] isBeginningOfSentence = new boolean[1];
final int nextToken = getNextWordNative(mNativeDict, token, codePoints,
isBeginningOfSentence);
final String word = StringUtils.getStringFromNullTerminatedCodePointArray(codePoints);
return new GetNextWordPropertyResult(
getWordProperty(word, isBeginningOfSentence[0]), nextToken);
}
// Add a unigram entry to binary dictionary with unigram attributes in native code.
public boolean addUnigramEntry(final String word, final int probability,
final String shortcutTarget, final int shortcutProbability,
final boolean isBeginningOfSentence, final boolean isNotAWord,
final boolean isPossiblyOffensive, final int timestamp) {
if (word == null || (word.isEmpty() && !isBeginningOfSentence)) {
return false;
}
final int[] codePoints = StringUtils.toCodePointArray(word);
final int[] shortcutTargetCodePoints = (shortcutTarget != null) ?
StringUtils.toCodePointArray(shortcutTarget) : null;
if (!addUnigramEntryNative(mNativeDict, codePoints, probability, shortcutTargetCodePoints,
shortcutProbability, isBeginningOfSentence, isNotAWord, isPossiblyOffensive,
timestamp)) {
return false;
}
mHasUpdated = true;
return true;
}
// Remove a unigram entry from the binary dictionary in native code.
public boolean removeUnigramEntry(final String word) {
if (TextUtils.isEmpty(word)) {
return false;
}
final int[] codePoints = StringUtils.toCodePointArray(word);
if (!removeUnigramEntryNative(mNativeDict, codePoints)) {
return false;
}
mHasUpdated = true;
return true;
}
// Add an n-gram entry to the binary dictionary with timestamp in native code.
public boolean addNgramEntry(final NgramContext ngramContext, final String word,
final int probability, final int timestamp) {
if (!ngramContext.isValid() || TextUtils.isEmpty(word)) {
return false;
}
final int[][] prevWordCodePointArrays = new int[ngramContext.getPrevWordCount()][];
final boolean[] isBeginningOfSentenceArray = new boolean[ngramContext.getPrevWordCount()];
ngramContext.outputToArray(prevWordCodePointArrays, isBeginningOfSentenceArray);
final int[] wordCodePoints = StringUtils.toCodePointArray(word);
if (!addNgramEntryNative(mNativeDict, prevWordCodePointArrays,
isBeginningOfSentenceArray, wordCodePoints, probability, timestamp)) {
return false;
}
mHasUpdated = true;
return true;
}
// Update entries for the word occurrence with the ngramContext.
public boolean updateEntriesForWordWithNgramContext(@Nonnull final NgramContext ngramContext,
final String word, final boolean isValidWord, final int count, final int timestamp) {
if (TextUtils.isEmpty(word)) {
return false;
}
final int[][] prevWordCodePointArrays = new int[ngramContext.getPrevWordCount()][];
final boolean[] isBeginningOfSentenceArray = new boolean[ngramContext.getPrevWordCount()];
ngramContext.outputToArray(prevWordCodePointArrays, isBeginningOfSentenceArray);
final int[] wordCodePoints = StringUtils.toCodePointArray(word);
if (!updateEntriesForWordWithNgramContextNative(mNativeDict, prevWordCodePointArrays,
isBeginningOfSentenceArray, wordCodePoints, isValidWord, count, timestamp)) {
return false;
}
mHasUpdated = true;
return true;
}
@UsedForTesting
public void updateEntriesForInputEvents(final WordInputEventForPersonalization[] inputEvents) {
if (!isValidDictionary()) {
return;
}
int processedEventCount = 0;
while (processedEventCount < inputEvents.length) {
if (needsToRunGC(true /* mindsBlockByGC */)) {
flushWithGC();
}
processedEventCount = updateEntriesForInputEventsNative(mNativeDict, inputEvents,
processedEventCount);
mHasUpdated = true;
if (processedEventCount <= 0) {
return;
}
}
}
private void reopen() {
close();
final File dictFile = new File(mDictFilePath);
// WARNING: Because we pass 0 as the offset and file.length() as the length, this can
// only be called for actual files. Right now it's only called by the flush() family of
// functions, which require an updatable dictionary, so it's okay. But beware.
loadDictionary(dictFile.getAbsolutePath(), 0 /* startOffset */,
dictFile.length(), mIsUpdatable);
}
// Flush to dict file if the dictionary has been updated.
public boolean flush() {
if (!isValidDictionary()) {
return false;
}
if (mHasUpdated) {
if (!flushNative(mNativeDict, mDictFilePath)) {
return false;
}
reopen();
}
return true;
}
// Run GC and flush to dict file if the dictionary has been updated.
public boolean flushWithGCIfHasUpdated() {
if (mHasUpdated) {
return flushWithGC();
}
return true;
}
// Run GC and flush to dict file.
public boolean flushWithGC() {
if (!isValidDictionary()) {
return false;
}
if (!flushWithGCNative(mNativeDict, mDictFilePath)) {
return false;
}
reopen();
return true;
}
/**
* Checks whether GC is needed to run or not.
* @param mindsBlockByGC Whether to mind operations blocked by GC. We don't need to care about
* the blocking in some situations such as in idle time or just before closing.
* @return whether GC is needed to run or not.
*/
public boolean needsToRunGC(final boolean mindsBlockByGC) {
if (!isValidDictionary()) {
return false;
}
return needsToRunGCNative(mNativeDict, mindsBlockByGC);
}
public boolean migrateTo(final int newFormatVersion) {
if (!isValidDictionary()) {
return false;
}
final File isMigratingDir =
new File(mDictFilePath + DIR_NAME_SUFFIX_FOR_RECORD_MIGRATION);
if (isMigratingDir.exists()) {
isMigratingDir.delete();
Log.e(TAG, "Previous migration attempt failed probably due to a crash. "
+ "Giving up using the old dictionary (" + mDictFilePath + ").");
return false;
}
if (!isMigratingDir.mkdir()) {
Log.e(TAG, "Cannot create a dir (" + isMigratingDir.getAbsolutePath()
+ ") to record migration.");
return false;
}
try {
final String tmpDictFilePath = mDictFilePath + DICT_FILE_NAME_SUFFIX_FOR_MIGRATION;
if (!migrateNative(mNativeDict, tmpDictFilePath, newFormatVersion)) {
return false;
}
close();
final File dictFile = new File(mDictFilePath);
final File tmpDictFile = new File(tmpDictFilePath);
if (!FileUtils.deleteRecursively(dictFile)) {
return false;
}
if (!BinaryDictionaryUtils.renameDict(tmpDictFile, dictFile)) {
return false;
}
loadDictionary(dictFile.getAbsolutePath(), 0 /* startOffset */,
dictFile.length(), mIsUpdatable);
return true;
} finally {
isMigratingDir.delete();
}
}
@UsedForTesting
public String getPropertyForGettingStats(final String query) {
if (!isValidDictionary()) {
return "";
}
return getPropertyNative(mNativeDict, query);
}
@Override
public boolean shouldAutoCommit(final SuggestedWordInfo candidate) {
return candidate.mAutoCommitFirstWordConfidence > CONFIDENCE_TO_AUTO_COMMIT;
}
@Override
public void close() {
synchronized (mDicTraverseSessions) {
final int sessionsSize = mDicTraverseSessions.size();
for (int index = 0; index < sessionsSize; ++index) {
final DicTraverseSession traverseSession = mDicTraverseSessions.valueAt(index);
if (traverseSession != null) {
traverseSession.close();
}
}
mDicTraverseSessions.clear();
}
closeInternalLocked();
}
private synchronized void closeInternalLocked() {
if (mNativeDict != 0) {
closeNative(mNativeDict);
mNativeDict = 0;
}
}
// TODO: Manage BinaryDictionary instances without using WeakReference or something.
@Override
protected void finalize() throws Throwable {
try {
closeInternalLocked();
} finally {
super.finalize();
}
}
}

View file

@ -0,0 +1,98 @@
/*
* Copyright (C) 2012, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.inputmethod.latin;
import org.dslul.openboard.inputmethod.latin.common.NativeSuggestOptions;
import org.dslul.openboard.inputmethod.latin.define.DecoderSpecificConstants;
import org.dslul.openboard.inputmethod.latin.utils.JniUtils;
import java.util.Locale;
public final class DicTraverseSession {
static {
JniUtils.loadNativeLibrary();
}
// Must be equal to MAX_RESULTS in native/jni/src/defines.h
private static final int MAX_RESULTS = 18;
public final int[] mInputCodePoints =
new int[DecoderSpecificConstants.DICTIONARY_MAX_WORD_LENGTH];
public final int[][] mPrevWordCodePointArrays =
new int[DecoderSpecificConstants.MAX_PREV_WORD_COUNT_FOR_N_GRAM][];
public final boolean[] mIsBeginningOfSentenceArray =
new boolean[DecoderSpecificConstants.MAX_PREV_WORD_COUNT_FOR_N_GRAM];
public final int[] mOutputSuggestionCount = new int[1];
public final int[] mOutputCodePoints =
new int[DecoderSpecificConstants.DICTIONARY_MAX_WORD_LENGTH * MAX_RESULTS];
public final int[] mSpaceIndices = new int[MAX_RESULTS];
public final int[] mOutputScores = new int[MAX_RESULTS];
public final int[] mOutputTypes = new int[MAX_RESULTS];
// Only one result is ever used
public final int[] mOutputAutoCommitFirstWordConfidence = new int[1];
public final float[] mInputOutputWeightOfLangModelVsSpatialModel = new float[1];
public final NativeSuggestOptions mNativeSuggestOptions = new NativeSuggestOptions();
private static native long setDicTraverseSessionNative(String locale, long dictSize);
private static native void initDicTraverseSessionNative(long nativeDicTraverseSession,
long dictionary, int[] previousWord, int previousWordLength);
private static native void releaseDicTraverseSessionNative(long nativeDicTraverseSession);
private long mNativeDicTraverseSession;
public DicTraverseSession(Locale locale, long dictionary, long dictSize) {
mNativeDicTraverseSession = createNativeDicTraverseSession(
locale != null ? locale.toString() : "", dictSize);
initSession(dictionary);
}
public long getSession() {
return mNativeDicTraverseSession;
}
public void initSession(long dictionary) {
initSession(dictionary, null, 0);
}
public void initSession(long dictionary, int[] previousWord, int previousWordLength) {
initDicTraverseSessionNative(
mNativeDicTraverseSession, dictionary, previousWord, previousWordLength);
}
private static long createNativeDicTraverseSession(String locale, long dictSize) {
return setDicTraverseSessionNative(locale, dictSize);
}
private void closeInternal() {
if (mNativeDicTraverseSession != 0) {
releaseDicTraverseSessionNative(mNativeDicTraverseSession);
mNativeDicTraverseSession = 0;
}
}
public void close() {
closeInternal();
}
@Override
protected void finalize() throws Throwable {
try {
closeInternal();
} finally {
super.finalize();
}
}
}

View file

@ -0,0 +1,129 @@
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.inputmethod.latin.utils;
import org.dslul.openboard.inputmethod.annotations.UsedForTesting;
import com.android.inputmethod.latin.BinaryDictionary;
import org.dslul.openboard.inputmethod.latin.common.StringUtils;
import org.dslul.openboard.inputmethod.latin.makedict.DictionaryHeader;
import org.dslul.openboard.inputmethod.latin.makedict.UnsupportedFormatException;
import org.dslul.openboard.inputmethod.latin.utils.JniUtils;
import java.io.File;
import java.io.IOException;
import java.util.Locale;
import java.util.Map;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public final class BinaryDictionaryUtils {
private static final String TAG = BinaryDictionaryUtils.class.getSimpleName();
private BinaryDictionaryUtils() {
// This utility class is not publicly instantiable.
}
static {
JniUtils.loadNativeLibrary();
}
@UsedForTesting
private static native boolean createEmptyDictFileNative(String filePath, long dictVersion,
String locale, String[] attributeKeyStringArray, String[] attributeValueStringArray);
private static native float calcNormalizedScoreNative(int[] before, int[] after, int score);
private static native int setCurrentTimeForTestNative(int currentTime);
public static DictionaryHeader getHeader(final File dictFile)
throws IOException, UnsupportedFormatException {
return getHeaderWithOffsetAndLength(dictFile, 0 /* offset */, dictFile.length());
}
public static DictionaryHeader getHeaderWithOffsetAndLength(final File dictFile,
final long offset, final long length) throws IOException, UnsupportedFormatException {
// dictType is never used for reading the header. Passing an empty string.
final BinaryDictionary binaryDictionary = new BinaryDictionary(
dictFile.getAbsolutePath(), offset, length,
true /* useFullEditDistance */, null /* locale */, "" /* dictType */,
false /* isUpdatable */);
final DictionaryHeader header = binaryDictionary.getHeader();
binaryDictionary.close();
if (header == null) {
throw new IOException();
}
return header;
}
public static boolean renameDict(final File dictFile, final File newDictFile) {
if (dictFile.isFile()) {
return dictFile.renameTo(newDictFile);
} else if (dictFile.isDirectory()) {
final String dictName = dictFile.getName();
final String newDictName = newDictFile.getName();
if (newDictFile.exists()) {
return false;
}
for (final File file : dictFile.listFiles()) {
if (!file.isFile()) {
continue;
}
final String fileName = file.getName();
final String newFileName = fileName.replaceFirst(
Pattern.quote(dictName), Matcher.quoteReplacement(newDictName));
if (!file.renameTo(new File(dictFile, newFileName))) {
return false;
}
}
return dictFile.renameTo(newDictFile);
}
return false;
}
@UsedForTesting
public static boolean createEmptyDictFile(final String filePath, final long dictVersion,
final Locale locale, final Map<String, String> attributeMap) {
final String[] keyArray = new String[attributeMap.size()];
final String[] valueArray = new String[attributeMap.size()];
int index = 0;
for (final String key : attributeMap.keySet()) {
keyArray[index] = key;
valueArray[index] = attributeMap.get(key);
index++;
}
return createEmptyDictFileNative(filePath, dictVersion, locale.toString(), keyArray,
valueArray);
}
public static float calcNormalizedScore(final String before, final String after,
final int score) {
return calcNormalizedScoreNative(StringUtils.toCodePointArray(before),
StringUtils.toCodePointArray(after), score);
}
/**
* Control the current time to be used in the native code. If currentTime >= 0, this method sets
* the current time and gets into test mode.
* In test mode, set timestamp is used as the current time in the native code.
* If currentTime < 0, quit the test mode and returns to using time() to get the current time.
*
* @param currentTime seconds since the unix epoch
* @return current time got in the native code.
*/
@UsedForTesting
public static int setCurrentTimeForTest(final int currentTime) {
return setCurrentTimeForTestNative(currentTime);
}
}

View file

@ -0,0 +1,107 @@
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.inputmethod.latin.utils;
import android.util.Log;
import org.dslul.openboard.inputmethod.annotations.UsedForTesting;
import org.dslul.openboard.inputmethod.latin.NgramContext;
import org.dslul.openboard.inputmethod.latin.common.StringUtils;
import org.dslul.openboard.inputmethod.latin.define.DecoderSpecificConstants;
import org.dslul.openboard.inputmethod.latin.settings.SpacingAndPunctuations;
import org.dslul.openboard.inputmethod.latin.utils.DictionaryInfoUtils;
import java.util.ArrayList;
import java.util.List;
import java.util.Locale;
// Note: this class is used as a parameter type of a native method. You should be careful when you
// rename this class or field name. See BinaryDictionary#addMultipleDictionaryEntriesNative().
public final class WordInputEventForPersonalization {
private static final String TAG = WordInputEventForPersonalization.class.getSimpleName();
private static final boolean DEBUG_TOKEN = false;
public final int[] mTargetWord;
public final int mPrevWordsCount;
public final int[][] mPrevWordArray =
new int[DecoderSpecificConstants.MAX_PREV_WORD_COUNT_FOR_N_GRAM][];
public final boolean[] mIsPrevWordBeginningOfSentenceArray =
new boolean[DecoderSpecificConstants.MAX_PREV_WORD_COUNT_FOR_N_GRAM];
// Time stamp in seconds.
public final int mTimestamp;
@UsedForTesting
public WordInputEventForPersonalization(final CharSequence targetWord,
final NgramContext ngramContext, final int timestamp) {
mTargetWord = StringUtils.toCodePointArray(targetWord);
mPrevWordsCount = ngramContext.getPrevWordCount();
ngramContext.outputToArray(mPrevWordArray, mIsPrevWordBeginningOfSentenceArray);
mTimestamp = timestamp;
}
// Process a list of words and return a list of {@link WordInputEventForPersonalization}
// objects.
public static ArrayList<WordInputEventForPersonalization> createInputEventFrom(
final List<String> tokens, final int timestamp,
final SpacingAndPunctuations spacingAndPunctuations, final Locale locale) {
final ArrayList<WordInputEventForPersonalization> inputEvents = new ArrayList<>();
final int N = tokens.size();
NgramContext ngramContext = NgramContext.EMPTY_PREV_WORDS_INFO;
for (int i = 0; i < N; ++i) {
final String tempWord = tokens.get(i);
if (StringUtils.isEmptyStringOrWhiteSpaces(tempWord)) {
// just skip this token
if (DEBUG_TOKEN) {
Log.d(TAG, "--- isEmptyStringOrWhiteSpaces: \"" + tempWord + "\"");
}
continue;
}
if (!DictionaryInfoUtils.looksValidForDictionaryInsertion(
tempWord, spacingAndPunctuations)) {
if (DEBUG_TOKEN) {
Log.d(TAG, "--- not looksValidForDictionaryInsertion: \""
+ tempWord + "\"");
}
// Sentence terminator found. Split.
// TODO: Detect whether the context is beginning-of-sentence.
ngramContext = NgramContext.EMPTY_PREV_WORDS_INFO;
continue;
}
if (DEBUG_TOKEN) {
Log.d(TAG, "--- word: \"" + tempWord + "\"");
}
final WordInputEventForPersonalization inputEvent =
detectWhetherVaildWordOrNotAndGetInputEvent(
ngramContext, tempWord, timestamp, locale);
if (inputEvent == null) {
continue;
}
inputEvents.add(inputEvent);
ngramContext = ngramContext.getNextNgramContext(new NgramContext.WordInfo(tempWord));
}
return inputEvents;
}
private static WordInputEventForPersonalization detectWhetherVaildWordOrNotAndGetInputEvent(
final NgramContext ngramContext, final String targetWord, final int timestamp,
final Locale locale) {
if (locale == null) {
return null;
}
return new WordInputEventForPersonalization(targetWord, ngramContext, timestamp);
}
}