tun2proxy/src/virtual_dns.rs
2024-06-22 16:39:25 +02:00

179 lines
6.1 KiB
Rust

use crate::error::Result;
use hashlink::{linked_hash_map::RawEntryMut, LruCache};
use std::{
collections::HashMap,
convert::TryInto,
net::{IpAddr, Ipv4Addr, Ipv6Addr},
str::FromStr,
time::{Duration, Instant},
};
const MAPPING_TIMEOUT: u64 = 60; // Mapping timeout in seconds
struct NameCacheEntry {
name: String,
expiry: Instant,
}
/// A virtual DNS server which allocates IP addresses to clients.
/// The IP addresses are in the range of private IP addresses.
/// The DNS server is implemented as a LRU cache.
pub struct VirtualDns {
trailing_dot: bool,
lru_cache: LruCache<IpAddr, NameCacheEntry>,
name_to_ip: HashMap<String, IpAddr>,
network_addr: IpAddr,
broadcast_addr: IpAddr,
next_addr: IpAddr,
}
impl Default for VirtualDns {
fn default() -> Self {
let start_addr = Ipv4Addr::from_str("198.18.0.0").unwrap();
let prefix_len = 15;
let network_addr = calculate_network_addr(start_addr, prefix_len);
let broadcast_addr = calculate_broadcast_addr(start_addr, prefix_len);
Self {
trailing_dot: false,
next_addr: start_addr.into(),
name_to_ip: HashMap::default(),
network_addr: IpAddr::from(network_addr),
broadcast_addr: IpAddr::from(broadcast_addr),
lru_cache: LruCache::new_unbounded(),
}
}
}
impl VirtualDns {
pub fn new() -> Self {
VirtualDns::default()
}
/// Returns the DNS response to send back to the client.
pub fn generate_query(&mut self, data: &[u8]) -> Result<(Vec<u8>, String, IpAddr)> {
use crate::dns;
let message = dns::parse_data_to_dns_message(data, false)?;
let qname = dns::extract_domain_from_dns_message(&message)?;
let mut insert_name = qname.clone();
if insert_name.ends_with('.') && !self.trailing_dot {
insert_name = String::from(insert_name.trim_end_matches('.'));
}
let ip = self.allocate_ip(insert_name)?;
let message = dns::build_dns_response(message, &qname, ip, 5)?;
Ok((message.to_vec()?, qname, ip))
}
fn increment_ip(addr: IpAddr) -> Result<IpAddr> {
let mut ip_bytes = match addr as IpAddr {
IpAddr::V4(ip) => Vec::<u8>::from(ip.octets()),
IpAddr::V6(ip) => Vec::<u8>::from(ip.octets()),
};
// Traverse bytes from right to left and stop when we can add one.
for j in 0..ip_bytes.len() {
let i = ip_bytes.len() - 1 - j;
if ip_bytes[i] != 255 {
// We can add 1 without carry and are done.
ip_bytes[i] += 1;
break;
} else {
// Zero this byte and carry over to the next one.
ip_bytes[i] = 0;
}
}
let addr = if addr.is_ipv4() {
let bytes: [u8; 4] = ip_bytes.as_slice().try_into()?;
IpAddr::V4(Ipv4Addr::from(bytes))
} else {
let bytes: [u8; 16] = ip_bytes.as_slice().try_into()?;
IpAddr::V6(Ipv6Addr::from(bytes))
};
Ok(addr)
}
// This is to be called whenever we receive or send a packet on the socket
// which connects the tun interface to the client, so existing IP address to name
// mappings to not expire as long as the connection is active.
pub fn touch_ip(&mut self, addr: &IpAddr) {
_ = self.lru_cache.get_mut(addr).map(|entry| {
entry.expiry = Instant::now() + Duration::from_secs(MAPPING_TIMEOUT);
});
}
pub fn resolve_ip(&mut self, addr: &IpAddr) -> Option<&String> {
self.lru_cache.get(addr).map(|entry| &entry.name)
}
fn allocate_ip(&mut self, name: String) -> Result<IpAddr> {
let now = Instant::now();
loop {
let (ip, entry) = match self.lru_cache.iter().next() {
None => break,
Some((ip, entry)) => (ip, entry),
};
if now > entry.expiry {
let name = entry.name.clone();
self.lru_cache.remove(&ip.clone());
self.name_to_ip.remove(&name);
continue;
}
break;
}
if let Some(ip) = self.name_to_ip.get(&name) {
let ip = *ip;
self.touch_ip(&ip);
return Ok(ip);
}
let started_at = self.next_addr;
loop {
if let RawEntryMut::Vacant(vacant) = self.lru_cache.raw_entry_mut().from_key(&self.next_addr) {
let expiry = Instant::now() + Duration::from_secs(MAPPING_TIMEOUT);
let name0 = name.clone();
vacant.insert(self.next_addr, NameCacheEntry { name, expiry });
self.name_to_ip.insert(name0, self.next_addr);
return Ok(self.next_addr);
}
self.next_addr = Self::increment_ip(self.next_addr)?;
if self.next_addr == self.broadcast_addr {
// Wrap around.
self.next_addr = self.network_addr;
}
if self.next_addr == started_at {
return Err("Virtual IP space for DNS exhausted".into());
}
}
}
}
fn calculate_network_addr(ip: std::net::Ipv4Addr, prefix_len: u8) -> std::net::Ipv4Addr {
let mask = (!0u32) << (32 - prefix_len);
let ip_u32 = u32::from_be_bytes(ip.octets());
std::net::Ipv4Addr::from((ip_u32 & mask).to_be_bytes())
}
fn calculate_broadcast_addr(ip: std::net::Ipv4Addr, prefix_len: u8) -> std::net::Ipv4Addr {
let mask = (!0u32) >> prefix_len;
let ip_u32 = u32::from_be_bytes(ip.octets());
std::net::Ipv4Addr::from((ip_u32 | mask).to_be_bytes())
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_cidr_addr() {
let start_addr = Ipv4Addr::from_str("198.18.0.0").unwrap();
let prefix_len = 15;
let network_addr = calculate_network_addr(start_addr, prefix_len);
let broadcast_addr = calculate_broadcast_addr(start_addr, prefix_len);
assert_eq!(network_addr, Ipv4Addr::from_str("198.18.0.0").unwrap());
assert_eq!(broadcast_addr, Ipv4Addr::from_str("198.19.255.255").unwrap());
}
}